JOURNAL OF AIRCRAFT
Vol. 40, No. 2, March-April 2003

Parallelized Three-Dimensional Unstructured Euler
Solver for Unsteady Aerodynamics

Erdal Oktay*
Roketsan, Missiles Industries, Inc., 06780 Ankara, Turkey

and

Hasan U. Akay' and Ali Uzun*
Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202

A parallel algorithm for the solution of unsteady Euler equations on unstructured and moving meshes is devel-
oped. A cell-centered finite volume scheme is used. The temporal discretization involves an implicit time-integration
scheme based on backward-Euler time differencing. The movement of the computational mesh is accomplished by
means of a dynamically deforming mesh algorithm. The parallelization is based on decomposition of the domain
into a series of subdomains with overlapped interfaces. The scheme is computationally efficient, time accurate, and
stable for large time increments. Detailed descriptions of the solution algorithm are given, and computations for
airflow around a NACA0012 airfoil and a missile configuration are presented to demonstrate the applications.

Nomenclature

= speed of sound

acceleration vector

normal force coefficient
pressure coefficient

missile diameter

total energy per unit volume
flux vector

reduced frequency

axial missile length

Mach number

surface normal unit vector
pressure

vector of conservation variables
residual vector

speed up

time

velocity componentsin x, y, and
z directions, respectively

= volume

flow velocity vector

mesh velocity vector
contravariant face speed
Cartesian coordinates

angle of attack, deg

specific heats ratio

density

= frequency

(‘)(‘)Q Q
sz
(T T T TR T TR

ROT Iz WA
1

SRR
1]

=
e
|

e
N
I

S™NRXEI IS
1]

Presented as Paper 2002-0107 at the AIAA 40th Aerospace Sciences
Meeting and Exhibit,Reno, NV, 14—-17 January 2002; received 2 April 2002;
revision received 20 November 2002; accepted for publication 2 December
2002. Copyright © 2003 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 0021-8669/03 $10.00 in correspondence with
the CCC.

*Manager, Aerodynamics Department, Elmadag. Member AIAA.

TProfessor and Chair, Department of Mechanical Engineering. Senior
Member AIAA.

*Graduate Student, Department of Mechanical Engineering, Purdue Uni-
versity, West Lafayette, Indiana.

348

Subscripts

c = cell-centered value

n = normal direction

w = wall value

x,y,z = Cartesian components
00 = freestream condition

Introduction

CCURATE and fast prediction of unsteady flow phenom-

ena for practical applications in aerodynamics still remains
to be a challenging problem because of excessive computer re-
sources needed for problems involving complex geometries and
large computational domains. Although the compressible Navier—
Stokes equations with appropriate turbulence models provide the
most accurate solution for aerodynamic characteristics of moving
bodies, the solution is prohibitively expensive because of the need
for very high mesh densities requiring several millions of mesh
points, which have to be solved several thousand times, if not more.
Unsteadiness in flow conditions and moving nature of the bodies
involved make the solution expensive and time consuming. Hence,
thereis aneed for simplifications and more innovativetechniquesfor
real-life applications. Euler equations, in which the viscosity of the
fluidis neglectedas a firstapproximationto the Navier—Stokes equa-
tions, give valuable information on aerodynamic force and moment
characteristicsof bodiesat moderate angles of attacks. As an attempt
to develop a practical tool for prediction of aerodynamicfeatures of
missiles in flight, the authors in this paper present a transient Euler
solver that uses a time-accurate implicit solver for the solution of
transient phenomena and a deforming mesh approach for the move-
ments of the body. Following the experience gained in Uzun et al.,!
the solver is parallelized using a domain-decomposition approach
by subdividing the flow domain into unstructured subdomains and
overlapped interfaces. This enables the code to run faster on net-
work of PCs and workstations. The previously developedserial Eu-
ler solver, USER3D,? has been modified to add these features for
solving unsteady aerodynamics and moving body problems. Vali-
dation of the serial version of the code for steady-state problems
has been documented elsewhere >* The present algorithm is based
on an implicit, cell-centered finite volume formulation. For upwind-
ing, the fluxes on cell faces are obtained using Roe’s flux-difference
splitting method because of its superior shock-detection and an-
tidissipative features.’ The dynamically deforming mesh algorithm
that is coupled with the flow solver moves the computational mesh
to conform to body movements. For instantaneous positions of the

OKTAY, AKAY, AND UZUN 349

moving boundary, the solution of a dynamically deforming spring
network at each time step is updated with an implicit algorithm that
uses the linearized backward-Euler time-differencing scheme.

In this paper, following the discussion of the developed algo-
rithms, the validationof the code with experimentsusing an unsteady
NACAO0012 airfoil test case as a first benchmark is presented. Fea-
tures of the developed algorithms for time-accurate prediction of
unsteady normal force characteristicsare demonstrated on a missile
geometry next. A new method for prediction of aerodynamic dy-
namic stability derivatives using the present algorithmsis presented
in Ref. 6.

Flow Solver

Euler Equations

Flows around oscillatingbodies can be solved either by using rel-
ative coordinates attached to the body’ or an arbitrary Lagrangian—
Eulerian (ALE) approach® on meshes that move and deform contin-
uously with the movement of the body. The use of a relative coor-
dinate system for a single-body problem is relatively simple, and it
eliminates the need for mesh movements. However, for multibod-
ies moving independentlythis requires separatecomputationalmesh
patchesandrelativecoordinatesystems attachedto each body, where
the flux balances between patches are achieved via interpolations
as in Chimera schemes.” With the ALE/deforming mesh approach,
on the other hand, both singlebody and multibody systems can be
solved by using the same computational mesh and coordinate sys-
tem. Although this approach is restricted to moderate movements
of the bodies, large movements can be treated by introducing new
meshes at selected intervals of the movements. In this paper the
ALE formulation with moving/deforming features has been used.
The three-dimensional unsteady and inviscid flow equations for a
finite-volume cell in ALE form are expressed in the following form
(e.g., see Singh et al.'%):

3
EfffgdvjuffnndS:o (1)

where @ =[p, pu, pv, pw, e]” is the vector of conserved flow vari-
ables,

o 0
pu ny
F-n=[(V-W)-nl| pv |+p|n)

L] Lwil

is the convective flux vector; n=n,i+n,j+n_ k is the normal
vector to the boundary 9€2; V =uj+ vj+ wk is the fluid ve-
locity; W =idx/dt +jdy/dt +koz/dt is the mesh velocity; and
W,=W-n=n,0x/0t+n,0y/0t +n.0z/0r is the face speed of
finite volume cells in the normal direction. The pressure p is given
by the equation of state for a perfect gas:

p=@—Dle—1p0>+v?+u)] (3)

These equations have been nondimensionalized by the freestream
density p, the freestream speed of sound a,, and a reference
length. The domain of interest is divided into a finite number of
tetrahedralcells, and Eq. (1) is applied to each cell in a cell-centered
fashion (e.g., see Frink et al.!!).

Boundary Conditions

For subsonicinflow and outflows the characteristicboundary con-
ditions are applied using Riemann invariants. For supersonicinflow
the known values of conservation variables are specified. For super-
sonic outflows the values of conservation variables are extrapolated
frominside the flow domain. For moving boundariesthe wall bound-
ary conditions are modified by taking the mesh movements into ac-
count. Thus, the flow tangency condition is imposed by calculating
the flow velocity on solid walls from

Fig. 1 Spring analogy around a mesh
point in deforming mesh algorithm.

Vo=Ve—n-[(V-W)-n] “

The wall pressureis calculated from the normal momentum equation
as

0
L~ pn-a, s)
on

The precedingboundary conditionsreduceto steady flow conditions
by setting the mesh velocity W to zero.

Deforming Mesh Algorithm

The deformingmesh algorithmmodels the unsteady aerodynamic
response that is caused by the forced oscillations of a configuration.
Hence, the mesh movement is known beforehand. The algorithm
used in this study has been previously developed by Batina.!? In
this algorithm the computational mesh is moved to conform to the
instantaneous position of the moving boundary at each time step.
The algorithm treats the computational mesh as a system of inter-
connected springs at every mesh point constructed by representing
each edge of every cell by a linear spring as shown schematicallyin
Fig. 1 for a two-dimensional configuration. The spring stiffness for
a givenedge i — j is taken as inversely proportionalto the length of
the edge as follows:

kn =1/ (x; —x)2+ (3, — ¥+ (2 — 2:)? (6)

The mesh points on the outer boundary of the domain are held fixed
while instantaneous location of the points on the inner boundary
(i.e., moving body) is given by the body motion. At each time step
the static equilibrium equations in the x, y, and z directions that
resultfrom a summation of forces are solved iteratively using Jacobi
iterations at each interior node i of the mesh for the displacements
Ax;, Ay;, and Az;.

After the new locations of the nodes are found, the new metrics
(i.e., new cell volumes, cell face areas, face normal vectors, etc.)
are computed. The nodal displacements are divided by the time
increment to determine the velocity of the nodes. It is assumed that
the velocity of a node is constant in magnitude and direction during
a time step. Once the nodal velocities are computed, the velocity
of a triangular cell face is found by taking the arithmetic average
of the velocities of the three nodes that constitute the face. The
face velocities are used in the flux computations in the solution
algorithm.

Geometric Conservation

Because of mesh movements, a geometric conservation law has
to be solved in addition to the mass, momentum, and energy con-
servation laws. This law is expressed in integral form as (e.g., see

Batina'?):
0
Efffdvjuffw-nds“:o %)
Q o

This geometric conservationlaw provides a self-consistentsolution
for the local cell volumes and is solved using the same scheme used
for all other flow conservation equations.

350 OKTAY, AKAY, AND UZUN

Time Integration

A cell-centered finite volume formulation is employed. The flow
variables are volume-averaged values; hence, the governing equa-
tions are rewritten in the following form:

Vn+1 AV"
AQ"T=—//F(Q)'ndS—Q"T ®)
aQ

where AQ" = Q"+! — Q", V" is the cell volume at time stepn, V" +1
is the cell volume at time stepn + 1, AV" = Vr+l v and At is
the time increment.

Because an implicit time-integration scheme is employed, fluxes
are evaluated at time step n + 1. The integrated flux vector is lin-
earized according to

OR"
R =R+ —AQ" 9
20 2 ©)

Hence the following system of linear equations is solved at each
time step:

Ail AQ” — Ril — Qil(A vil/At) (10)
where
vil aRil
Al = —] — — (11)
At Q"

R = —// F(Q)" -ndS (12)
aQ

The flow variables are stored at the centroid of each tetrahedron.
Flux quantities across cell faces are computed using Roe’s flux-
difference splitting method for upwinding because of its superior
shock-detectionand antidissipative features.’

The implicit time-integration method used in this study has been
previously suggested by Anderson'® for the solution of steady-state
Euler equations on stationary meshes. The system of simultaneous
equations that results from the application of Eq. (10) for all of the
cells in the mesh can be obtained by a directinversion of a large ma-
trix with large bandwidth. However, the direct inversion technique
demands a huge amount of memory and extensive computer time
to perform the matrix inversions for three-dimensional problems.
Instead, a Gauss—Seidel relaxation procedure with 5 x 5 submatri-
ces A" for the five conservation variables in each cell is used for
the solution of the system of equations. In this relaxation scheme
the solution is obtained through a sequence of iterations in which
an approximation of AQ" is continually refined until acceptable
convergenceis reached.

Parallelization of the Code

For parallelizationof the code, a domain-decompositionapproach
is used, where the flow domain is subdivided into a number of
subdomains equal or more than the number of available processors.
The subdomains, also named solution blocks, are interconnectedby
means of interfaces, which are of matching and overlapping type,
following the methodology proposed in Akay et al.!* Overlaps are
of one cell between two blocks. The interfaces serve to exchange
the data between the blocks. The schematic in Fig. 2 shows the
arrangement for a case of two neighboring blocks. Each block has
both ablock solverand an interface solver. The governingequations
for flow or mesh movements are solved in a block solver, which
updates its interface solver with newly calculated nodal variables
at each iteration step. The interface solver in each block, in turn,
communicates with the interface solver of the neighboringblock for
the same interface. Each interface solver also updatesits block after
receiving information from its neighbor. In each block the nodes on
the interfaces are flagged as either receiving or sending nodes. The
ones on the interior side of the blocks are sending nodes, and the
onesonthe exteriorside arereceivingnodes. The sendingnodes send
their data to the correspondingnodes in the neighboringblocks, and

Processor 2

Processor 1

Interface

Block solver Solver

Block 1 Interface 1

i
I
i
1
1
i
t
]

Fig. 2 Block and interface solvers for block-to-interface and interface-
to-interface communications.

the receiving nodes receive the data from the corresponding nodes
in the neighboringblock. The communicationbetween the blocks is
achieved by means of the message-passinginterface (MPI).!*> Both
the flow and mesh deformation solvers are parallelized using the
same algorithm.

Mesh Partitioning for Parallelization

The computational domain that is discretized with an unstruc-
tured mesh is partitioned into subdomains or blocks using a pro-
gram named General Divider, which is a general unstructured
mesh-partitioningcode developed at the CFD Laboratory at Indiana
University—Purdue University Indianapolis !® It is capable of parti-
tioning both structured (hexahedral) and unstructured (tetrahedral)
meshes in three-dimensional geometries. The interfaces between
partitioned blocks are of matching and overlappingtype. The inter-
faces serve to exchange data among the blocks.'*

Structure of the Parallel Code

The following steps are involved in the parallelization:

1) The computational domain 2 is divided into blocks
Q;(i=1,...,n), where n > p is the number of blocks and p is
the number of processors. The General Divider program is used to
partition the domain into blocks.

2) Interfaces with one element overlap are assigned between
neighboring blocks. This is also done by the General Divider
program.

3) The block and interfaceinformationare providedto the parallel
USER3D program.

4) Blocks are distributed to different machines on the network.
Depending on the availability of the processors vs the number of
blocks, one or more blocks might be assigned to each processor.

5) Both the mesh movement and the unsteady Euler equations are
solved in block solvers for unsteady moving boundary problems.
Only the steady Euler equations are solved in block solvers in the
case of steady-state problems.

6) Interface information is exchanged between neighboring
blocks in interface solvers.

The main differences between the steady and the unsteady flow
solution schemes are as follows:

1) The dynamically deforming mesh algorithmis only used in un-
steady flow problems. It is not needed in steady-state computations
because the computational mesh remains stationary in steady-state
problems.

2) Local time-stepping strategy accelerates the convergence to
steady state; hence, this strategy is used often while solving steady-
state problems.

3) For unsteady problems a global time incrementis used because
the unsteady flow solution has to be time accurate. All cells in the
computationalmesh use the same time increment during the course
of unsteady flow computations.

4) Forboth steady and unsteady problems the flow solverperforms
20 Gauss—Seidel iterations in each time step to solve the system
of equations. Because time accuracy is not desired in steady-state
problems, the flow solver first performs the 20 iterations and then
communicates once in each time cycle while solving steady-state

OKTAY, AKAY, AND UZUN 351

Initialize for each block

No
Unsteady problem?

Move the mesh to conform
with body motion

e

Update boundary
conditions

‘ y
Block solver for Euler
equations

y

Advance in time

Interface solver for Euler
equations

Final time?

Save solutions

Fig. 3 Flowchart of the parallel algorithm.

problems. This approach reduces the communication time require-
ments of the flow solver while solving steady-state problems.

5) Inunsteady problemsboth the flow and deformingmesh solvers
communicate once after every iteration within each time step. If this
is not done, errors are introduced into the solution as a result of
parallelism.

A general flowchart of the precedingalgorithmsis givenin Fig. 3.

Test Cases

Two tests cases have been considered here to illustrate various
features of the developed algorithms. The program was first tested
for accuracy by considering a well-known oscillating case for the
NACAOQ012 airfoil. The unsteady results were compared with the
experimental and other numerical results in the literature. The time
accuracy of the results was verified with multiple blocks and differ-
ent meshes and time step sizes. To demonstrate the applicability of
the current method to complex problems and to study the parallel
efficiency of the developed algorithms, a basic-missile configura-
tion has been considered as the second test case. Both steady and
unsteady computations have been performed.

In all cases a steady-state solution was first obtained to be
used as an initial condition for the unsteady calculations to fol-
low. A local time-stepping approach was used for steady calcula-
tions with the local time step in each cell m determined from the
condition:

Al’lll = CFL(‘/lll/Alll) (13)

where CFL is the Courant-Friedrichs-Lewy number, V,, is the cell
volume, and

+a,)s"] (14)

3
po= Y [(er

i=1

where u’ is the ith direction flow speed in cell m, a,, is the speed
of sound in cell m, and S}" is the projected area of the cell m in the
ith coordinatedirection. Steady iterations typically startat CFL =5,
which is linearly increased up to 20-50 range within 50 time steps

or so, and solutions continue until the residuals drop three orders
of magnitude—typically within 200-400 steps. A constant time-
step value is used for all unsteady calculations, with the time step
determined from the duration of unsteady cycles. The time-step
size needed for unsteady flows depends on the mesh density and
the speed of unsteady oscillations. For each time step 20 Gauss—
Seidel iterations are performed for the solution of flow equations
in each solution block. Although the interface data are exchanged
at every iteration, in each step of the unsteady calculations they
are exchanged only at the end of 20 iterations in steady cases. The
deforming mesh solver, needed for each time step of the unsteady
calculations, also exchanges interface information among blocks
during the Jacobiiterationsof the spring assembly equations. Hence,
substantially extra amount of communicationis needed in each step
of the unsteady calculations, because of extrainformationexchange
needed in both flow and deforming mesh solvers.

The unstructuredmeshesused here were generatedusing the mesh
generation module of a commercially available finite element CAD
package I-DEAS™. All cases were run on Indiana University’s
IBM RISC 6000/SP POWER3/Thin Node multiprocessor system,
with 375-MHz clock cycle CPU and 2-4 GB memory processors.
A maximum of 20 processors were allocated for this project.

NACA0012 Airfoil Case

This well-documented basic case was tested by Landon!” under
sinusoidal pitchingoscillationsat differentfrequencies. For the con-
ditions considered here, the angle of attack varies about the quarter-
chord with amplitude t, as

a(f) = o,y + op sin(wy 1) (15)

wherea,, =0.016degis the mean angle of pitching;a, =2.51degis
the amplitude of pitching; w, =2k V., /c is the frequency of pitching
oscillations; k =0.0814 is the reduced frequency; ¢ = 1 the airfoil
chordlength; is the nondimensionaltime; and V, is the freestream
velocity, with M, =0.755= "V /a. as the freestream Mach
number.

The steady-state solution at the mean angle of pitching position
was used as an initial solution to the unsteady calculations. The
solutions were computed using two meshes: the coarse mesh con-
sisting of 11,448 cells and 2859 nodes, and the fine mesh consisting
of 99,884 cells and 20,941 nodes. Both meshes were partitioned
into various number of blocks from 2 through 20 for parallel com-
puting. Shown in Figs. 4a and 4b are the plots of the partitioned
meshes in the vicinity of the airfoil at maximum and minimum an-
gle of attack positions, respectively, for the 20-block and fine-mesh
case. Overlapped interfaces common to each neighboringblock are
indicated with darker lines. Because of two-dimensional nature of
the problem, one layer of cells is used in the out-of-plane direc-
tions, with the symmetry boundary conditions imposed on both
sides. The mesh is extended to 10 chord lengths in all far-field
directions.

For the unsteady computations three cycles of motion were com-
puted to obtain periodic solutions. The time variation of the normal
force coefficient with respect to the angle of attack on the coarse
and fine mesh is given in Fig. 5a for 1000 steps per cycle. As can
be observed, the differences between the coarse and fine mesh re-
sults are minor, with the fine mesh yielding slightly higher (4%)
magnitudes. The effect of time step used on the accuracy of un-
steady calculations is illustrated in Fig. 5b. There are again minor
differences among the results of cases with 250, 500, and 1000
time steps per cycles of motion, where the slightly higher magni-
tudes are obtained (5%) with the smallest step size, At =0.051119
case (1000 steps per cycle). All unsteady solutions are independent
of the block subdivision, indicating that the conservation is main-
tained during parallelization. These results suggest that the Euler
solver is reasonably accurate for both mesh sizes and time steps
used here, and the finer mesh has a better accuracy. Shown in Fig. 6
is the comparison of the computed normal force coefficient vs the
angle-of-attackresults with the experimental data of Landon!” and
the Euler solution of Kandil and Chuang’ for the same case. As

352 OKTAY, AKAY, AND UZUN

R e e
RoA S e SRl
S Xk

000 oy
s BRSO s O e e
farga g S i ¢ o s
gl s
e 5 :_;3' o 2

Fe
o

a5 et

s ww“;%?&:ﬁfiw
S X KDt
e S

\Q: %‘4: ‘ Sl by ';\z
S R

A A

b) At minimum angle-of-attack position

Fig. 4 NACAO0012: View of mesh near the airfoil for 20-block model
(dark lines indicate overlapping block interfaces).

- Coarse Mesh

0.5)
04d 7 ~ Fine Mesh

0.3 1 3

021, 1

0.1 /

b4

5 o ———t T
-0.1 4 120 160
-0.2 4
-0.3 4
0.4
-0.5

Time
a) Effect of mesh refinement
— — — 250 Steps/Cycle
05— |77 500 Steps/Cycle
) 1000 Steps/Cycle
0.3
0.1+

2 {

b T T T T
-0.1 4 40 120 160
-0.3 1
-0.5

Time

b) Effect of time-step size
Fig. 5 NACAO0012: Time variation of normal force coefficient.

can be observed, there is a good agreement with the experiment, in
spite of the fact that the viscous effects are neglected in the Euler
solver. The comparison of the computed and experimental pressure
coefficient values on the airfoil surface is shown in Fig. 7 at the
minimum angle-of-attack position « = —2.41 deg. These pressure
coefficientdistributionswere taken during the third cycle of the 1000
time steps per cycle of motion computations. As can be observed
from these figures, the computed instantaneous pressure coefficient

n_r;
0.4 u
0.3 1 —— Present
0.2 4 m Experiment
A Kandil & Chuang
4 o
5 . :
ul -2 01 ¢ 2 4
]
u -0.3
-0.4
05
Alpha
Fig. 6 NACAO0012: Variation of normal force coefficient with angle of
attack.
-1.5
Coarse Mesh
-1 4 Fine Mesh
O Experiment
-0.5
S 0

Q 0.2 0.4 0.6 0.8
Xic

Fig. 7 NACAO0012: Pressure coefficient at o = —2.41 position.

=y

0.084

(00/8

L]

Fig. 8 Basic Finner geometry.!8

10d

distributions are in good agreement with the experimental pres-
sure coefficient distributions. Furthermore, the difference between
the pressure coefficient distributions obtained on the coarse and
fine meshes is observed to be reasonable, considering the fact that
the coarse mesh has much fewer cells and nodes than the fine mesh.

Missile Case

A missile geometry, commonly known as the Basic Finner,'® was
considered here to demonstrate the various features and the parallel
efficiency of the code. The same configuration was analyzed for
prediction of the dynamic damping derivatives using the present
solverin Ref. 6. Shown in Fig. 8 is the geometry of the Basic Finner.
A view of the computational mesh used at zero angle of attack,
consisting of 144,216 nodes and 796,105 cells, is shown in Fig. 9.
The mesh is extended to 4.5L distance in all directions.

The missile was subjected to the sinusoidal pitching oscillations
about its center of gravity, x = 5d, with the angle-of-attack varia-
tion defined in Eq. (15), and o, = 0 deg, o, = 10 deg, k = 2.53165,
¢=10d, and M, =1.58.

The steady-state solution at the mean angle of pitching posi-
tion was used as an initial solution to the unsteady calculations.
The steady-state solution was reached in approximately 300 time
steps. Shown in Figs. 10 and 11 are the computational mesh and

OKTAY, AKAY, AND UZUN 353

N

it

N
R7

LD
NN
S
oK

TANVAVEN
NNAVAY AV v AV VAVAVAYAYA
A A A Y e N A I VAY:
NL‘“MMFNMM!ENNQAVE&%’%:{%E

/)

NIV S VAN VAV AV ONAY, VAV VANV NV} PanAN!
ZAVAYAY iAVNEA‘VAVAVAVAVAVAVAEVAVAVNAVAVAVA!VAVAVAVAVAVAVAEﬂﬂvﬂ‘vﬂ&‘Bmﬂn’
YOI YAV NAVAVAYAVAVAN iy SWAVAVAVAVAVA g WAVASAVAVAVAN rgy 0 Vi dVavap s R
R O R I SRR T
DKL O OIS XS ORISR ROC A
g A N S R R R >
Do) S R R e e L R
o RISk RSt ™
Fek: R s SRR N
i’?‘ e RO PR Ry
740
RAVaYay.
NN 1A
RS X %
Nk 5 S
AT AT AT AVA YA S YA AT AT ATATATA Y 0, PRI ERPRISKIRA
A Y
s I R R NSRRI SR
R O O R e RPN |
R R R

N/

v YAV
Y

AV
P

AV ‘
AA?VI%KQE%’%‘%} A 4‘
LhRRie) :;vggﬁ"awm»‘é‘ S

>

%
%y V2
R
SRS X
A ST A ey
AR
‘ P

VQNAV‘Y

O
52
e
e PaS Y
AV

A
)
AN/

s
ROX
-

e

2%

vl
Ce X
RAVATA
SEESS
7 "ﬁ A0
ATREE
% X

{7

RS
£
s
<
N
Y
)

o AR
T e n s
T P A TATAY S WAL
e AT Ly S e
X a";'g@%:ﬁ'g‘wzi%@mm
g AR
K TATAVA Sy A TATATAN RV At

s AV

%y

15

)
v,

5
5

Vs
7

Shas
A
T AN
VAVAVAY,
NN
SO
NN
SN

<

3
vy

E

)

5
AYS

\7

4
Yav:
X

a)

{7
v
A
AV

S

ORISR
;“'A‘A
NN

N

\
’ i

X
X
Yay,

o

o "
A

b

é

%K

oY
/D
N

Fig. 10 Basic Finner: Mesh at maximum angle of attack.

mach
! 194703
= 1.69441
144179
1.18917

0.935651
0679419

Fig. 11 Basic Finner: Mach contours at maximum angle of attack.

the computed Mach contours, respectively, at the 10-deg angle-of-
attack position. The variation of the normal force coefficient for two
cycles of motion is shown in Fig. 12. The impulsive transient at the
initial time step is caused by sudden start of high frequency oscil-
lations. One cycle of response was computed in 20,000 time steps
with Ar =3.926 x 1073,

CPU and elapsed times were measured to evaluate the parallel
performance of the code. Shown in Figs. 13a and 13b are the com-
parisons of the measured CPU and elapsed times for steady and

21§
2
-3 4
-4

Time
With respect to time

CN

-15

Alpha (deg)
With respect to angle of attack
Fig. 12 Basic Finner: Variation of normal force coefficient.

20000
16000 OCPU time
B Elapsed time

2 12000
]
E 8000 -
i

4000 -

2 4 [¢] 8 16 20
Number of Processors

a) Steady solutions

20000
16000 1 OCcPU tlme.
—_ B Elapsed time
£ 12000
@
E 8000 -
=
4000 -
0 .
2 4 6 8 16 20
Number of Processors
b) Unsteady solutions

Fig. 13 Basic Finner: Comparison of CPU and elapsed times for 200
time steps.

unsteady cases with different number of processors. Even though
the algorithm allows the use of more than one block in a proces-
sor, these timings were obtained with one block per processor. The
differencesbetween total elapsed and CPU times are causedby com-
munication time needed for exchange of information between the
blocks. As can be observed, the CPU and elapsed time requirements
of the unsteady solver are higher (about 25%) because of extra com-
putationsand communicationneeded in flow and mesh deformation

354 OKTAY, AKAY, AND UZUN

25
— Ideal
20 - Steady
—&— Unstead
15 /R y

10 -~

sl

0 5 10 15 20 25

Number of Processors

Speedup (Sp)

Fig. 14 Basic Finner: Speed up for 200 time steps of steady and un-
steady solutions.

algorithms. All of the timings were based on 200 time steps. The
parallel speed up of the algorithms for steady and unsteady solu-
tions is summarized in Fig. 14. Here, the speed up is computed
from the expression S, = T,/T,, where T} is the total elapsed time
needed to solve the problem with one processorand 7, is the elapsed
time needed with p processors. As expected, the speed up for the
unsteady case is slightly lower than the steady solution case. For
the mesh and the computer system used here, the steady solver is
90% efficient with 20 processors, while the unsteady solveris 85%
efficient, where the percent efficiency defined as £E=100x S, /p.

Conclusions

In this research the serial and steady flow version of the computer
program USER3D has been modified and parallelized for the solu-
tion of steady and unsteady Euler equationson unstructuredmeshes.
A deformingmesh approachis used for unsteady movements of bod-
ies. The solution algorithm was based on a finite volume method
with an implicit time-integrationscheme. Parallelization was based
on a domain-decompositionapproach and the message passing be-
tween the parallel processes was achieved using the MPI'> message
passing library for parallel computing. Several steady and unsteady
problems were analyzed to demonstrate the possible applications of
the current solution method. Reasonable efficiencies were achieved
for up to 20 processors while solving both steady and unsteady
flows. The features of the algorithms presented here can be cited as
follows: 1) a three-dimensional unstructured solver with arbitrary
partitions suitable for complex geometries, 2) ability for arbitrary
mesh deformations allows accurate unsteady solution of moving
body problems, 3) both flow and deforming mesh algorithmsare par-
allelized, 4) ability for multiprocessing on heterogeneous systems
by assigning one or more partitions to each processor is suitable
for load balancing on heterogeneous systems, and 5) fast and time-
accurate computations. Practical applicationsof the tools developed
here can be found in Ref. 6 for determination of dynamic stabil-
ity derivatives, such as pitch and roll damping, needed for missile
design.

Acknowledgments

The authors express their appreciation to Zhenyin Li of the
Indiana University—Purdue University Indianapolis CFD Labora-

tory for the expert assistance provided in performing the computer
runs needed for this paper. The computer support was provided
on the CFD Laboratory’s local and wide area networks by Resat
Payli; and the computer access provided on the Indiana Univer-
sity’s IBM SP system by the University Information Technology
Services (UITS) are gratefully acknowledged.

References

1Uzun, A., Akay, H. U., and Bronnenberg, C., “Parallel Computations of
Unsteady Euler Equations on Dynamically Deforming Unstructured Grids,”
Proceedings of Parallel CFD’99, edited by D. Keyes, A. Ecer, N. Satofuka,
and J. Periaux, Elsevier Science, Amsterdam, 2000, pp. 415-422.

2Oktay, E., “USER3D, 3-Dimensional Unstructured Euler Solver,’
ROKETSAN Missile Industries Inc., SA-RS-RP-R 009/442, Ankara,
Turkey, May 1994.

3 Oktay, E., Alemdaroglu, N., Tarhan, E., Champigny, P., and d’Espiney, P.,
“Euler and Navier—Stokes Solutions for Missiles at High Angles of Attack,”
Journal of Spacecraft and Rockets, Vol. 36, No. 6, 1999, pp. 850-858.

4Oktay, E., and Asma, C. O., “Drag Prediction with an Euler Solver at
Supersonic Speeds,” Journalof Spacecraft and Rockets, Vol. 37,No. 5, 2000,
pp- 692-697.

SRoe, P. L., “Characteristic-Based Schemes for the Euler Equations,”
Annual Review of Fluid Mechanics, Vol. 18, 1986, pp. 337-365.

6Oktay, E., and Akay, H. U., “CFD Predictions of Dynamic Derivatives
for Missiles,” AIAA Paper 2002-0276,Jan. 2002.

7Kandil, O. A., and Chuang, H. A., “Computation of Steady and Unsteady
Vortex-Dominated Flows with Shock Waves,” AIAA Journal, Vol. 26, No. 5,
1988, pp. 524-531.

8Trepanier, J. Y., Reggio, M., Zhang, H., and Camarero, R., “A Finite
Volume Method for the Euler Equations on Arbitrary Lagrangian-Eulerian
Grids,” Computers and Fluids, Vol. 20, No. 4, 1991, pp. 399-409.

9Benek, J. A., Buning, P. G., and Steger, J. L., “A 3D Chimera Grid
Embedding Technique,” AIAA Paper 85-1523, July 1985.

IUSingh, K. P, Newman, J. C., and Baysal, O., “Dynamic Unstructured
Method for Flows Past Multiple Objects in Relative Motion,” AIAA Journal,
Vol. 33, No. 4, 1995, pp. 641-649.

I Erink, N. T., Parikh, P, and Pirzadeh, S., “A Fast Upwind Solver for the
Euler Equations on Three-Dimensional Unstructured Meshes,” AIAA Paper
91-0102,Jan. 1991.

12Batina, J. T., “Unsteady Euler Algorithm with Unstructured Dynamic
Mesh for Complex Aircraft Aerodynamic Analysis,” AIAA Journal, Vol. 29,
No. 3, 1991, pp. 327-333.

13 Anderson, W. K., “Grid Generation and Flow Solution Method for Eu-
ler Equations on Unstructured Grids,” Journal of Computational Physics,
Vol. 11, No. 1, 1994, pp. 23-38.

14Akay, H. U., Blech, R., Ecer, A., Ercoskun, D., Kemle, B., Quealy, A.,
and Williams, A., “A Database Management System for Parallel Processing
of CFD Algorithms,” Proceedings of Parallel CFD 92, edited by R. B. Pelz,
A. Ecer, and J. Hauser, Elsevier Science, Amsterdam, 1993, pp. 9-23.

I5<MPI: A Message Passing Interface Standard—Message Passing Inter-
face Forum,” The International Journal of Supercomputer Applications and
High Performance Computing, Vol. 8, Nos. 3-4, 1994.

mBronnenberg, C. E., “GD: A General Divider User’s Manual—An Un-
structured Grid Partitioning Program,” CFD Lab., Indiana Univ.—Purdue
Univ. Indianapolis, Rept. 99-01, Indianapolis, IN, June 1999.

T andon,R. H., “NACA 0012. Oscillating and Transient Pitching,” Com-
pendium of Unsteady Aerodynamic Measurements, Data Set 3, AGARD-R-
702, London, Aug. 1982.

18Shantz, I., and Groves, R. T., “Dynamic and Static Stability Measure-
ments of the Basic Finner at Supersonic Speeds,” NAVORD, Rept. 4516,
Whiteoak, MD, Jan. 1960.

