
JOURNAL OF AIRCRAFT

Vol. 40, No. 2, March–April 2003

Parallelized Three-Dimensional Unstructured Euler
Solver for Unsteady Aerodynamics

Erdal Oktay¤

Roketsan, Missiles Industries, Inc., 06780 Ankara, Turkey
and

Hasan U. Akay† and Ali Uzun‡

Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202

A parallel algorithm for the solution of unsteady Euler equations on unstructured and moving meshes is devel-
oped.A cell-centered � nite volumescheme is used. The temporal discretization involvesan implicit time-integration
scheme based on backward-Euler time differencing. The movement of the computationalmesh is accomplished by
means of a dynamically deforming mesh algorithm. The parallelization is based on decomposition of the domain
into a series of subdomainswith overlapped interfaces. The scheme is computationallyef� cient, time accurate, and
stable for large time increments. Detailed descriptions of the solution algorithm are given, and computations for
air� ow around a NACA0012 airfoil and a missile con� guration are presented to demonstrate the applications.

Nomenclature
a = speed of sound
a = acceleration vector
CN = normal force coef� cient
C p = pressure coef� cient
d = missile diameter
e = total energy per unit volume
F = � ux vector
k = reduced frequency
L = axial missile length
M = Mach number
n = surface normal unit vector
p = pressure
Q = vector of conservationvariables
R = residual vector
Sp = speed up
t = time
u; v; w = velocity components in x , y, and

z directions, respectively
V = volume
V = � ow velocity vector
W = mesh velocity vector
Wn = contravariant face speed
x; y; z = Cartesian coordinates
® = angle of attack, deg
° = speci� c heats ratio
½ = density
! = frequency

Presented as Paper 2002-0107 at the AIAA 40th Aerospace Sciences
Meeting and Exhibit,Reno, NV, 14–17 January 2002; received 2 April 2002;
revision received 20 November 2002; accepted for publication 2 December
2002. Copyright c° 2003 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 0021-8669/03 $10.00 in correspondence with
the CCC.

¤Manager, Aerodynamics Department, Elmadag. Member AIAA.
†Professor and Chair, Department of Mechanical Engineering. Senior

Member AIAA.
‡Graduate Student, Department of Mechanical Engineering, Purdue Uni-

versity, West Lafayette, Indiana.

Subscripts

c = cell-centeredvalue
n = normal direction
w = wall value
x; y; z = Cartesian components
1 = freestream condition

Introduction

A CCURATE and fast prediction of unsteady � ow phenom-
ena for practical applications in aerodynamics still remains

to be a challenging problem because of excessive computer re-
sources needed for problems involving complex geometries and
large computational domains. Although the compressible Navier–
Stokes equations with appropriate turbulence models provide the
most accurate solution for aerodynamic characteristics of moving
bodies, the solution is prohibitively expensive because of the need
for very high mesh densities requiring several millions of mesh
points, which have to be solved several thousand times, if not more.
Unsteadiness in � ow conditions and moving nature of the bodies
involved make the solution expensive and time consuming. Hence,
there is a need for simpli� cationsandmore innovativetechniquesfor
real-life applications.Euler equations, in which the viscosity of the
� uid is neglectedas a � rst approximationto theNavier–Stokesequa-
tions, give valuable information on aerodynamic force and moment
characteristicsof bodiesat moderateanglesof attacks.As anattempt
to develop a practical tool for predictionof aerodynamicfeaturesof
missiles in � ight, the authors in this paper present a transient Euler
solver that uses a time-accurate implicit solver for the solution of
transient phenomena and a deformingmesh approachfor the move-
ments of the body. Following the experiencegained in Uzun et al.,1

the solver is parallelized using a domain-decomposition approach
by subdividing the � ow domain into unstructured subdomains and
overlapped interfaces. This enables the code to run faster on net-
work of PCs and workstations.The previouslydevelopedserial Eu-
ler solver, USER3D,2 has been modi� ed to add these features for
solving unsteady aerodynamics and moving body problems. Vali-
dation of the serial version of the code for steady-state problems
has been documented elsewhere.3;4 The present algorithm is based
on an implicit, cell-centered� nite volume formulation.For upwind-
ing, the � uxes on cell faces are obtainedusing Roe’s � ux-difference
splitting method because of its superior shock-detection and an-
tidissipativefeatures.5 The dynamically deforming mesh algorithm
that is coupled with the � ow solver moves the computational mesh
to conform to body movements. For instantaneous positions of the

348

OKTAY, AKAY, AND UZUN 349

moving boundary, the solution of a dynamically deforming spring
network at each time step is updated with an implicit algorithm that
uses the linearized backward-Euler time-differencingscheme.

In this paper, following the discussion of the developed algo-
rithms,thevalidationof thecodewith experimentsusinganunsteady
NACA0012 airfoil test case as a � rst benchmark is presented. Fea-
tures of the developed algorithms for time-accurate prediction of
unsteady normal force characteristicsare demonstratedon a missile
geometry next. A new method for prediction of aerodynamic dy-
namic stabilityderivativesusing the present algorithms is presented
in Ref. 6.

Flow Solver
Euler Equations

Flows around oscillatingbodies can be solved either by using rel-
ative coordinates attached to the body7 or an arbitrary Lagrangian–
Eulerian (ALE) approach8 on meshes that move and deform contin-
uously with the movement of the body. The use of a relative coor-
dinate system for a single-body problem is relatively simple, and it
eliminates the need for mesh movements. However, for multibod-
ies moving independentlythis requiresseparatecomputationalmesh
patchesand relativecoordinatesystemsattachedto eachbody,where
the � ux balances between patches are achieved via interpolations
as in Chimera schemes.9 With the ALE/deforming mesh approach,
on the other hand, both singlebody and multibody systems can be
solved by using the same computational mesh and coordinate sys-
tem. Although this approach is restricted to moderate movements
of the bodies, large movements can be treated by introducing new
meshes at selected intervals of the movements. In this paper the
ALE formulation with moving/deforming features has been used.
The three-dimensional unsteady and inviscid � ow equations for a
� nite-volume cell in ALE form are expressed in the following form
(e.g., see Singh et al.10):

@

@t

Z Z Z

Ä

Q dV C
Z Z

@Ä

F ¢ n dS D 0 (1)

where Q D [½; ½u; ½v; ½w; e]T is the vectorof conserved� ow vari-
ables,

F ¢ n D [.V ¡ W/ ¢ n]

2

66664

½

½u

½v

½w

e C p

3

77775
C p

2

66664

0

nx

ny

nz

Wn

3

77775
(2)

is the convective � ux vector; n D nx i C n y j C nzk is the normal
vector to the boundary @Ä; V D uj C vj C wk is the � uid ve-
locity; W D i@x=@ t C j@y=@ t C k@z=@t is the mesh velocity; and
Wn D W ¢ n D nx @ x=@t C n y @y=@t C nz@z=@t is the face speed of
� nite volume cells in the normal direction. The pressure p is given
by the equation of state for a perfect gas:

p D .° ¡ 1/
£
e ¡ 1

2 ½.u2 C v2 C w2/
¤

(3)

These equations have been nondimensionalizedby the freestream
density ½1 , the freestream speed of sound a1 , and a reference
length. The domain of interest is divided into a � nite number of
tetrahedralcells, and Eq. (1) is applied to each cell in a cell-centered
fashion (e.g., see Frink et al.11/.

Boundary Conditions

For subsonicin� ow andout� ows the characteristicboundarycon-
ditions are appliedusing Riemann invariants.For supersonicin� ow
the known values of conservationvariablesare speci� ed. For super-
sonic out� ows the values of conservationvariables are extrapolated
from inside the � owdomain.For movingboundariesthewall bound-
ary conditions are modi� ed by taking the mesh movements into ac-
count. Thus, the � ow tangency condition is imposed by calculating
the � ow velocity on solid walls from

Fig. 1 Spring analogy around a mesh
point in deforming mesh algorithm.

Vw D Vc ¡ n ¢ [.V ¡ W/ ¢ n] (4)

The wall pressureis calculatedfromthe normalmomentumequation
as

@p

@n
D ¡½n ¢ aw (5)

The precedingboundaryconditionsreduceto steady� ow conditions
by setting the mesh velocity W to zero.

Deforming Mesh Algorithm

The deformingmesh algorithmmodels the unsteadyaerodynamic
response that is caused by the forced oscillationsof a con� guration.
Hence, the mesh movement is known beforehand. The algorithm
used in this study has been previously developed by Batina.12 In
this algorithm the computational mesh is moved to conform to the
instantaneous position of the moving boundary at each time step.
The algorithm treats the computational mesh as a system of inter-
connected springs at every mesh point constructed by representing
each edge of every cell by a linear spring as shown schematicallyin
Fig. 1 for a two-dimensional con� guration. The spring stiffness for
a given edge i ¡ j is taken as inverselyproportionalto the length of
the edge as follows:

km D 1
¯p

.x j ¡ xi /2 C .y j ¡ yi /2 C .z j ¡ zi /2 (6)

The mesh points on the outer boundaryof the domain are held � xed
while instantaneous location of the points on the inner boundary
(i.e., moving body) is given by the body motion. At each time step
the static equilibrium equations in the x , y, and z directions that
result from a summationof forcesare solved iterativelyusing Jacobi
iterations at each interior node i of the mesh for the displacements
1xi , 1yi , and 1zi .

After the new locations of the nodes are found, the new metrics
(i.e., new cell volumes, cell face areas, face normal vectors, etc.)
are computed. The nodal displacements are divided by the time
increment to determine the velocity of the nodes. It is assumed that
the velocity of a node is constant in magnitude and direction during
a time step. Once the nodal velocities are computed, the velocity
of a triangular cell face is found by taking the arithmetic average
of the velocities of the three nodes that constitute the face. The
face velocities are used in the � ux computations in the solution
algorithm.

Geometric Conservation

Because of mesh movements, a geometric conservation law has
to be solved in addition to the mass, momentum, and energy con-
servation laws. This law is expressed in integral form as (e.g., see
Batina12/:

@

@t

Z Z Z

Ä

dV C
Z Z

@Ä

W ¢ n dS D 0 (7)

This geometric conservationlaw provides a self-consistentsolution
for the local cell volumes and is solved using the same scheme used
for all other � ow conservationequations.

350 OKTAY, AKAY, AND UZUN

Time Integration

A cell-centered� nite volume formulation is employed. The � ow
variables are volume-averaged values; hence, the governing equa-
tions are rewritten in the following form:

1Qn V n C 1

1t
D ¡

Z Z

@Ä

F.Q/ ¢ n dS ¡ Qn 1V n

1t
(8)

where1Qn D Qn C 1 ¡ Qn , V n is thecell volumeat time step n, V n C 1

is the cell volume at time step n C 1, 1V n D V n C 1 ¡ V n , and 1t is
the time increment.

Because an implicit time-integrationscheme is employed, � uxes
are evaluated at time step n C 1. The integrated � ux vector is lin-
earized according to

Rn C 1 D Rn C @Rn

@Qn
1Qn (9)

Hence the following system of linear equations is solved at each
time step:

An1Qn D Rn ¡ Qn.1V n=1t/ (10)

where

An D
V n

1t
I ¡ @Rn

@Qn
(11)

Rn D ¡
Z Z

@Ä

F.Q/n ¢ n dS (12)

The � ow variables are stored at the centroid of each tetrahedron.
Flux quantities across cell faces are computed using Roe’s � ux-
difference splitting method for upwinding because of its superior
shock-detectionand antidissipative features.5

The implicit time-integrationmethod used in this study has been
previously suggestedby Anderson13 for the solution of steady-state
Euler equations on stationary meshes. The system of simultaneous
equations that results from the application of Eq. (10) for all of the
cells in the mesh can be obtainedby a direct inversionof a largema-
trix with large bandwidth. However, the direct inversion technique
demands a huge amount of memory and extensive computer time
to perform the matrix inversions for three-dimensional problems.
Instead, a Gauss–Seidel relaxation procedure with 5 £ 5 submatri-
ces An for the � ve conservation variables in each cell is used for
the solution of the system of equations. In this relaxation scheme
the solution is obtained through a sequence of iterations in which
an approximation of 1Qn is continually re� ned until acceptable
convergence is reached.

Parallelization of the Code

For parallelizationof thecode,a domain-decompositionapproach
is used, where the � ow domain is subdivided into a number of
subdomains equal or more than the number of available processors.
The subdomains,also named solution blocks, are interconnectedby
means of interfaces, which are of matching and overlapping type,
following the methodology proposed in Akay et al.14 Overlaps are
of one cell between two blocks. The interfaces serve to exchange
the data between the blocks. The schematic in Fig. 2 shows the
arrangement for a case of two neighboring blocks. Each block has
both a block solverand an interfacesolver.The governingequations
for � ow or mesh movements are solved in a block solver, which
updates its interface solver with newly calculated nodal variables
at each iteration step. The interface solver in each block, in turn,
communicateswith the interface solverof the neighboringblock for
the same interface. Each interface solver also updates its block after
receiving information from its neighbor. In each block the nodes on
the interfaces are � agged as either receiving or sending nodes. The
ones on the interior side of the blocks are sending nodes, and the
oneson theexteriorsideare receivingnodes.The sendingnodessend
their data to the correspondingnodes in the neighboringblocks, and

Fig. 2 Block and interface solvers for block-to-interfaceand interface-
to-interface communications.

the receiving nodes receive the data from the corresponding nodes
in the neighboringblock. The communicationbetween the blocks is
achieved by means of the message-passinginterface (MPI).15 Both
the � ow and mesh deformation solvers are parallelized using the
same algorithm.

Mesh Partitioning for Parallelization

The computational domain that is discretized with an unstruc-
tured mesh is partitioned into subdomains or blocks using a pro-
gram named General Divider, which is a general unstructured
mesh-partitioningcode developedat the CFD Laboratoryat Indiana
University—Purdue UniversityIndianapolis.16 It is capableof parti-
tioning both structured (hexahedral) and unstructured (tetrahedral)
meshes in three-dimensional geometries. The interfaces between
partitioned blocks are of matching and overlapping type. The inter-
faces serve to exchange data among the blocks.14

Structure of the Parallel Code

The following steps are involved in the parallelization:
1) The computational domain Ä is divided into blocks

Äi .i D 1; : : : ; n/, where n ¸ p is the number of blocks and p is
the number of processors. The General Divider program is used to
partition the domain into blocks.

2) Interfaces with one element overlap are assigned between
neighboring blocks. This is also done by the General Divider
program.

3) The blockand interfaceinformationare providedto theparallel
USER3D program.

4) Blocks are distributed to different machines on the network.
Depending on the availability of the processors vs the number of
blocks, one or more blocks might be assigned to each processor.

5) Both the mesh movement and the unsteadyEuler equationsare
solved in block solvers for unsteady moving boundary problems.
Only the steady Euler equations are solved in block solvers in the
case of steady-state problems.

6) Interface information is exchanged between neighboring
blocks in interface solvers.

The main differences between the steady and the unsteady � ow
solution schemes are as follows:

1) The dynamicallydeformingmesh algorithmis only used in un-
steady � ow problems. It is not needed in steady-statecomputations
because the computational mesh remains stationary in steady-state
problems.

2) Local time-stepping strategy accelerates the convergence to
steady state; hence, this strategy is used often while solving steady-
state problems.

3) For unsteadyproblems a global time increment is used because
the unsteady � ow solution has to be time accurate. All cells in the
computationalmesh use the same time increment during the course
of unsteady � ow computations.

4) Forbothsteadyandunsteadyproblemsthe � ow solverperforms
20 Gauss–Seidel iterations in each time step to solve the system
of equations. Because time accuracy is not desired in steady-state
problems, the � ow solver � rst performs the 20 iterations and then
communicates once in each time cycle while solving steady-state

OKTAY, AKAY, AND UZUN 351

Fig. 3 Flowchart of the parallel algorithm.

problems. This approach reduces the communication time require-
ments of the � ow solver while solving steady-state problems.

5) In unsteadyproblemsboth the � ow anddeformingmesh solvers
communicateonce after every iterationwithin each time step. If this
is not done, errors are introduced into the solution as a result of
parallelism.

A general � owchart of the precedingalgorithms is given in Fig. 3.

Test Cases
Two tests cases have been considered here to illustrate various

features of the developed algorithms. The program was � rst tested
for accuracy by considering a well-known oscillating case for the
NACA0012 airfoil. The unsteady results were compared with the
experimental and other numerical results in the literature. The time
accuracy of the results was veri� ed with multiple blocks and differ-
ent meshes and time step sizes. To demonstrate the applicability of
the current method to complex problems and to study the parallel
ef� ciency of the developed algorithms, a basic-missile con� gura-
tion has been considered as the second test case. Both steady and
unsteady computations have been performed.

In all cases a steady-state solution was � rst obtained to be
used as an initial condition for the unsteady calculations to fol-
low. A local time-stepping approach was used for steady calcula-
tions with the local time step in each cell m determined from the
condition:

1tm · CFL.Vm=Am/ (13)

where CFL is the Courant–Friedrichs–Lewy number, Vm is the cell
volume, and

Am D
3X

i D 1

£¡­­um
i

­­C am

¢
Sm

i

¤
(14)

where u i
m is the i th direction � ow speed in cell m, am is the speed

of sound in cell m, and Sm
i is the projected area of the cell m in the

i th coordinatedirection.Steady iterations typicallystart at CFL D 5,
which is linearly increased up to 20–50 range within 50 time steps

or so, and solutions continue until the residuals drop three orders
of magnitude—typically within 200–400 steps. A constant time-
step value is used for all unsteady calculations, with the time step
determined from the duration of unsteady cycles. The time-step
size needed for unsteady � ows depends on the mesh density and
the speed of unsteady oscillations. For each time step 20 Gauss–
Seidel iterations are performed for the solution of � ow equations
in each solution block. Although the interface data are exchanged
at every iteration, in each step of the unsteady calculations they
are exchanged only at the end of 20 iterations in steady cases. The
deforming mesh solver, needed for each time step of the unsteady
calculations, also exchanges interface information among blocks
during the Jacobiiterationsof the springassemblyequations.Hence,
substantiallyextra amount of communicationis needed in each step
of the unsteadycalculations,becauseof extra informationexchange
needed in both � ow and deforming mesh solvers.

The unstructuredmeshesusedhereweregeneratedusingthemesh
generationmodule of a commerciallyavailable � nite element CAD
package I-DEASTM . All cases were run on Indiana University’s
IBM RISC 6000/SP POWER3/Thin Node multiprocessor system,
with 375-MHz clock cycle CPU and 2–4 GB memory processors.
A maximum of 20 processors were allocated for this project.

NACA0012 Airfoil Case

This well-documented basic case was tested by Landon17 under
sinusoidalpitchingoscillationsat differentfrequencies.For the con-
ditions consideredhere, the angle of attack varies about the quarter-
chord with amplitude ®p as

®.t/ D ®m C ® p sin.!® t/ (15)

where®m D 0:016deg is themean angleofpitching;®p D 2:51deg is
the amplitudeof pitching;!® D 2kV1=c is the frequencyof pitching
oscillations; k D 0:0814 is the reduced frequency; c D 1 the airfoil
chord length; t is the nondimensionaltime; and V1 is the freestream
velocity, with M1 D 0:755 D V1=a1 as the freestream Mach
number.

The steady-state solution at the mean angle of pitching position
was used as an initial solution to the unsteady calculations. The
solutions were computed using two meshes: the coarse mesh con-
sisting of 11,448 cells and 2859 nodes, and the � ne mesh consisting
of 99,884 cells and 20,941 nodes. Both meshes were partitioned
into various number of blocks from 2 through 20 for parallel com-
puting. Shown in Figs. 4a and 4b are the plots of the partitioned
meshes in the vicinity of the airfoil at maximum and minimum an-
gle of attack positions, respectively, for the 20-block and � ne-mesh
case. Overlapped interfaces common to each neighboringblock are
indicated with darker lines. Because of two-dimensional nature of
the problem, one layer of cells is used in the out-of-plane direc-
tions, with the symmetry boundary conditions imposed on both
sides. The mesh is extended to 10 chord lengths in all far-� eld
directions.

For the unsteady computations three cycles of motion were com-
puted to obtain periodic solutions.The time variation of the normal
force coef� cient with respect to the angle of attack on the coarse
and � ne mesh is given in Fig. 5a for 1000 steps per cycle. As can
be observed, the differences between the coarse and � ne mesh re-
sults are minor, with the � ne mesh yielding slightly higher (4%)
magnitudes. The effect of time step used on the accuracy of un-
steady calculations is illustrated in Fig. 5b. There are again minor
differences among the results of cases with 250, 500, and 1000
time steps per cycles of motion, where the slightly higher magni-
tudes are obtained (5%) with the smallest step size, 1t D 0:051119
case (1000 steps per cycle). All unsteady solutions are independent
of the block subdivision, indicating that the conservation is main-
tained during parallelization. These results suggest that the Euler
solver is reasonably accurate for both mesh sizes and time steps
used here, and the � ner mesh has a better accuracy. Shown in Fig. 6
is the comparison of the computed normal force coef� cient vs the
angle-of-attackresults with the experimental data of Landon17 and
the Euler solution of Kandil and Chuang7 for the same case. As

352 OKTAY, AKAY, AND UZUN

a) At maximum angle-of-attack position

b) At minimum angle-of-attack position

Fig. 4 NACA0012: View of mesh near the airfoil for 20-block model
(dark lines indicate overlapping block interfaces).

a) Effect of mesh re� nement

b) Effect of time-step size

Fig. 5 NACA0012: Time variation of normal force coef� cient.

can be observed, there is a good agreement with the experiment, in
spite of the fact that the viscous effects are neglected in the Euler
solver. The comparison of the computed and experimental pressure
coef� cient values on the airfoil surface is shown in Fig. 7 at the
minimum angle-of-attack position ® D ¡2:41 deg. These pressure
coef� cientdistributionswere takenduringthe third cycleof the1000
time steps per cycle of motion computations. As can be observed
from these � gures, the computed instantaneouspressure coef� cient

Fig. 6 NACA0012: Variation of normal force coef� cient with angle of
attack.

Fig. 7 NACA0012: Pressure coef� cient at ® = ¡¡2.41 position.

Fig. 8 Basic Finner geometry.18

distributions are in good agreement with the experimental pres-
sure coef� cient distributions. Furthermore, the difference between
the pressure coef� cient distributions obtained on the coarse and
� ne meshes is observed to be reasonable, considering the fact that
the coarse mesh has much fewer cells and nodes than the � ne mesh.

Missile Case

A missile geometry, commonly known as the Basic Finner,18 was
consideredhere to demonstrate the various features and the parallel
ef� ciency of the code. The same con� guration was analyzed for
prediction of the dynamic damping derivatives using the present
solver in Ref. 6. Shown in Fig. 8 is the geometry of the Basic Finner.
A view of the computational mesh used at zero angle of attack,
consisting of 144,216 nodes and 796,105 cells, is shown in Fig. 9.
The mesh is extended to 4:5L distance in all directions.

The missile was subjected to the sinusoidal pitching oscillations
about its center of gravity, x D 5d, with the angle-of-attack varia-
tion de� ned in Eq. (15), and ®m D 0 deg, ® p D 10 deg, k D 2:53165,
c D 10d , and M1 D 1:58.

The steady-state solution at the mean angle of pitching posi-
tion was used as an initial solution to the unsteady calculations.
The steady-state solution was reached in approximately 300 time
steps. Shown in Figs. 10 and 11 are the computational mesh and

OKTAY, AKAY, AND UZUN 353

Fig. 9 Basic Finner mesh on the symmetry plane.

Fig. 10 Basic Finner: Mesh at maximum angle of attack.

Fig. 11 Basic Finner: Mach contours at maximum angle of attack.

the computed Mach contours, respectively, at the 10-deg angle-of-
attack position.The variationof the normal force coef� cient for two
cycles of motion is shown in Fig. 12. The impulsive transient at the
initial time step is caused by sudden start of high frequency oscil-
lations. One cycle of response was computed in 20,000 time steps
with 1t D 3:926 £ 10¡5.

CPU and elapsed times were measured to evaluate the parallel
performance of the code. Shown in Figs. 13a and 13b are the com-
parisons of the measured CPU and elapsed times for steady and

With respect to time

With respect to angle of attack

Fig. 12 Basic Finner: Variation of normal force coef� cient.

a) Steady solutions

b) Unsteady solutions

Fig. 13 Basic Finner: Comparison of CPU and elapsed times for 200
time steps.

unsteady cases with different number of processors. Even though
the algorithm allows the use of more than one block in a proces-
sor, these timings were obtained with one block per processor.The
differencesbetween totalelapsedand CPU timesare causedby com-
munication time needed for exchange of information between the
blocks.As can be observed,the CPU and elapsed time requirements
of the unsteadysolver are higher (about 25%) becauseof extra com-
putationsand communicationneeded in � ow and mesh deformation

354 OKTAY, AKAY, AND UZUN

Fig. 14 Basic Finner: Speed up for 200 time steps of steady and un-
steady solutions.

algorithms. All of the timings were based on 200 time steps. The
parallel speed up of the algorithms for steady and unsteady solu-
tions is summarized in Fig. 14. Here, the speed up is computed
from the expression Sp D T1=Tp , where T1 is the total elapsed time
needed to solve the problemwith oneprocessorand Tp is the elapsed
time needed with p processors. As expected, the speed up for the
unsteady case is slightly lower than the steady solution case. For
the mesh and the computer system used here, the steady solver is
90% ef� cient with 20 processors,while the unsteady solver is 85%
ef� cient, where the percent ef� ciency de� ned as E D 100 £ Sp=p.

Conclusions
In this research the serial and steady � ow versionof the computer

program USER3D has been modi� ed and parallelized for the solu-
tion of steadyand unsteadyEuler equationson unstructuredmeshes.
A deformingmeshapproachis usedforunsteadymovementsof bod-
ies. The solution algorithm was based on a � nite volume method
with an implicit time-integrationscheme. Parallelizationwas based
on a domain-decompositionapproach and the message passing be-
tween the parallel processes was achievedusing the MPI15 message
passing library for parallel computing. Several steady and unsteady
problems were analyzed to demonstrate the possible applicationsof
the current solution method. Reasonable ef� ciencieswere achieved
for up to 20 processors while solving both steady and unsteady
� ows. The features of the algorithms presented here can be cited as
follows: 1) a three-dimensional unstructured solver with arbitrary
partitions suitable for complex geometries, 2) ability for arbitrary
mesh deformations allows accurate unsteady solution of moving
bodyproblems,3) both � ow anddeformingmeshalgorithmsarepar-
allelized, 4) ability for multiprocessing on heterogeneous systems
by assigning one or more partitions to each processor is suitable
for load balancing on heterogeneoussystems, and 5) fast and time-
accurate computations.Practical applicationsof the tools developed
here can be found in Ref. 6 for determination of dynamic stabil-
ity derivatives, such as pitch and roll damping, needed for missile
design.

Acknowledgments
The authors express their appreciation to Zhenyin Li of the

Indiana University—Purdue University Indianapolis CFD Labora-

tory for the expert assistance provided in performing the computer
runs needed for this paper. The computer support was provided
on the CFD Laboratory’s local and wide area networks by Resat
Payli; and the computer access provided on the Indiana Univer-
sity’s IBM SP system by the University Information Technology
Services (UITS) are gratefully acknowledged.

References
1Uzun, A., Akay, H. U., and Bronnenberg, C., “Parallel Computations of

Unsteady Euler Equations on Dynamically Deforming Unstructured Grids,”
Proceedings of Parallel CFD’99, edited by D. Keyes, A. Ecer, N. Satofuka,
and J. Periaux, Elsevier Science, Amsterdam, 2000, pp. 415–422.

2Oktay, E., “USER3D, 3-Dimensional Unstructured Euler Solver,”
ROKETSAN Missile Industries Inc., SA-RS-RP-R 009/442, Ankara,
Turkey, May 1994.

3Oktay,E.,Alemdaro �glu,N., Tarhan,E.,Champigny,P., and d’Espiney,P.,
“Euler and Navier–Stokes Solutions for Missiles at High Angles of Attack,”
Journal of Spacecraft and Rockets, Vol. 36, No. 6, 1999, pp. 850–858.

4Oktay, E., and Asma, C. O., “Drag Prediction with an Euler Solver at
SupersonicSpeeds,” Journalof Spacecraft andRockets, Vol. 37, No. 5, 2000,
pp. 692–697.

5Roe, P. L., “Characteristic-Based Schemes for the Euler Equations,”
Annual Review of Fluid Mechanics, Vol. 18, 1986, pp. 337–365.

6Oktay, E., and Akay, H. U., “CFD Predictions of Dynamic Derivatives
for Missiles,” AIAA Paper 2002-0276, Jan. 2002.

7Kandil, O. A., and Chuang,H. A., “Computationof Steady and Unsteady
Vortex-Dominated Flows with Shock Waves,” AIAA Journal, Vol. 26, No. 5,
1988, pp. 524–531.

8Trepanier, J. Y., Reggio, M., Zhang, H., and Camarero, R., “A Finite
Volume Method for the Euler Equations on Arbitrary Lagrangian-Eulerian
Grids,” Computers and Fluids, Vol. 20, No. 4, 1991, pp. 399–409.

9Benek, J. A., Buning, P. G., and Steger, J. L., “A 3D Chimera Grid
Embedding Technique,” AIAA Paper 85-1523, July 1985.

10Singh, K. P., Newman, J. C., and Baysal, O., “Dynamic Unstructured
Method for Flows Past MultipleObjects in Relative Motion,” AIAA Journal,
Vol. 33, No. 4, 1995, pp. 641–649.

11Frink, N. T., Parikh, P., and Pirzadeh, S., “A Fast Upwind Solver for the
Euler Equationson Three-Dimensional Unstructured Meshes,” AIAA Paper
91-0102, Jan. 1991.

12Batina, J. T., “Unsteady Euler Algorithm with Unstructured Dynamic
Mesh for Complex Aircraft Aerodynamic Analysis,” AIAA Journal, Vol. 29,
No. 3, 1991, pp. 327–333.

13Anderson, W. K., “Grid Generation and Flow Solution Method for Eu-
ler Equations on Unstructured Grids,” Journal of Computational Physics,
Vol. 11, No. 1, 1994, pp. 23–38.

14Akay, H. U., Blech, R., Ecer, A., Ercoskun, D., Kemle, B., Quealy, A.,
and Williams, A., “A Database Management System for Parallel Processing
of CFD Algorithms,” Proceedings of Parallel CFD ’92, edited by R. B. Pelz,
A. Ecer, and J. Hauser, Elsevier Science, Amsterdam, 1993, pp. 9–23.

15“MPI: A Message Passing Interface Standard—Message Passing Inter-
face Forum,” The International Journal of Supercomputer Applications and
High Performance Computing, Vol. 8, Nos. 3–4, 1994.

16Bronnenberg, C. E., “GD: A General Divider User’s Manual—An Un-
structured Grid Partitioning Program,” CFD Lab., Indiana Univ.—Purdue
Univ. Indianapolis, Rept. 99-01, Indianapolis, IN, June 1999.

17Landon,R. H., “NACA 0012.Oscillating and Transient Pitching,” Com-
pendium of Unsteady Aerodynamic Measurements, Data Set 3, AGARD-R-
702, London, Aug. 1982.

18Shantz, I., and Groves, R. T., “Dynamic and Static Stability Measure-
ments of the Basic Finner at Supersonic Speeds,” NAVORD, Rept. 4516,
Whiteoak, MD, Jan. 1960.

